Analysis of a New Nonlinear Interpolatory Subdivision Scheme on σ Quasi-Uniform Grids
نویسندگان
چکیده
In this paper, we introduce and analyze the behavior of a nonlinear subdivision operator called PPH, which comes from its associated PPH reconstruction on nonuniform grids. The acronym stands for Piecewise Polynomial Harmonic, since is built by using piecewise polynomials defined means an adaption based use weighted Harmonic mean. novelty work lies in generalization already existing scheme to case. We define corresponding study some important issues related schemes such as convergence, smoothness limit function, preservation convexity. order obtain general results, consider σ quasi-uniform also perform numerical experiments reinforce theoretical results.
منابع مشابه
Analysis of quasi-uniform subdivision
We study the smoothness of quasi-uniform bivariate subdivision. A quasi-uniform bivariate scheme consists of different uniform rules on each side of the y-axis, far enough from the axis, some different rules near the y-axis, and is uniform in the y-direction. For schemes that generate polynomials up to degree m, we derive a sufficient condition for C continuity of the limit function, which is s...
متن کاملAn Approximating-Interpolatory Subdivision scheme
In the last decade, study and construction of quad/triangle subdivision schemes have attracted attention. The quad/triangle subdivision starts with a control mesh consisting of both quads and triangles and produces finer and finer meshes with quads and triangles (Fig. 1). Designers often want to model certain regions with quad meshes and others with triangle meshes to get better visual quality ...
متن کاملA Controllable Ternary Interpolatory Subdivision Scheme
A non-uniform 3-point ternary interpolatory subdivision scheme with variable subdivision weights is introduced. Its support is computed. The C and C convergence analysis are presented. To elevate its controllability, a modified edition is proposed. For every initial control point on the initial control polygon a shape weight is introduced. These weights can be used to control the shape of the c...
متن کاملNon-uniform interpolatory subdivision via splines
We present a framework for deriving non-uniform interpolatory subdivision algorithms closely related to non-uniform spline interpolants. Families of symmetric non-uniform interpolatory 2n-point schemes of smoothness C are presented for n = 2, 3, 4 and even higher order, as well as a variety of non-uniform 6-point schemes with C continuity.
متن کاملApproximation order of interpolatory nonlinear subdivision schemes
Linear interpolatory subdivision schemes of C smoothness have approximation order at least r + 1. The present paper extends this result to nonlinear univariate schemes which are in proximity with linear schemes in a certain specific sense. The results apply to nonlinear subdivision schemes in Lie groups and in surfaces which are obtained from linear subdivision schemes. We indicate how to exten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2021
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math9121320